Difference between revisions of "Projection Names"
From ICA Map Projections
Line 43: | Line 43: | ||
| [[Atlantis]] || || || || || || || | | [[Atlantis]] || || || || || || || | ||
|- | |- | ||
− | | [[azimuthal equidistant]] || ||[[ | + | | [[azimuthal equidistant]] || ||[[abstandstreue Azimutalprojektion]] || [[azimuthal equidistant|正距方位図法]] ||[[azimuthal equidistant|равнопромежуточная азимутальная]] || || || |
|- | |- | ||
| [[Babinet]] || || || || || || || | | [[Babinet]] || || || || || || || | ||
Line 105: | Line 105: | ||
| [[plate carree|geographic projection]] || ||[[Quadratische Plattkarte]] || [[plate carree|正距円筒図法<br/>正方円筒図法]] ||[[plate carree|проекция географических координат]] || || || | | [[plate carree|geographic projection]] || ||[[Quadratische Plattkarte]] || [[plate carree|正距円筒図法<br/>正方円筒図法]] ||[[plate carree|проекция географических координат]] || || || | ||
|- | |- | ||
− | | [[gnomonic|gnomic]] || ||[[gnomonisch]] || [[gnomonic|心射図法]] || || || || | + | | [[gnomonic|gnomic]] || ||[[gnomonisch; gnomonische Azimutalprojektion]] || [[gnomonic|心射図法]] || || || || |
|- | |- | ||
| [[gnomonic]] || || || [[gnomonic|心射図法]] ||[[gnomonic|гномоническая]] || || || | | [[gnomonic]] || || || [[gnomonic|心射図法]] ||[[gnomonic|гномоническая]] || || || | ||
Line 151: | Line 151: | ||
| [[Nicolosi]] || || || [[Nicolosi|ニコロシー図法]] || || || || | | [[Nicolosi]] || || || [[Nicolosi|ニコロシー図法]] || || || || | ||
|- | |- | ||
− | | [[orthographic]] || || || [[orthographic|正射図法<br/>正変形図法]] || [[orthographic|ортографическая]]|| || || | + | | [[orthographic]] || ||[[orthographisch; orthographische Azimutalprojektion]] || [[orthographic|正射図法<br/>正変形図法]] || [[orthographic|ортографическая]]|| || || |
|- | |- | ||
| [[parabolic]] || || || || || || || | | [[parabolic]] || || || || || || || | ||
Line 183: | Line 183: | ||
| [[general perspective|scenographic]] || ||[[allgemeine Perspektive]] || || || || || | | [[general perspective|scenographic]] || ||[[allgemeine Perspektive]] || || || || || | ||
|- | |- | ||
− | | [[sinusoidal|sinusoidal]] || || || [[sinusoidal|サンソン図法]] || [[sinusoidal|синусоидальная]] || || || | + | | [[sinusoidal|sinusoidal]] || ||[[sinusoidal]] || [[sinusoidal|サンソン図法]] || [[sinusoidal|синусоидальная]] || || || |
|- | |- | ||
| [[space oblique Mercator]] || || || || [[space oblique Mercator|внешняя косая равноугольная цилиндрическая проекция Меркатора]]|| || || | | [[space oblique Mercator]] || || || || [[space oblique Mercator|внешняя косая равноугольная цилиндрическая проекция Меркатора]]|| || || | ||
|- | |- | ||
− | | [[stereographic]] || ||[[stereographisch]] || ||[[stereographic|стереографическая]] || || || | + | | [[stereographic]] || ||[[stereographisch, stereographische Azimutalprojektion]] || ||[[stereographic|стереографическая]] || || || |
|- | |- | ||
− | | [[stereographic cylindric]] || ||[[ | + | | [[stereographic cylindric]] || ||[[Stereographische Zylinderprojektion]] || || || || || |
|- | |- | ||
| [[Stabius I]] || || || || || || || | | [[Stabius I]] || || || || || || || | ||
Line 203: | Line 203: | ||
| [[trapezoidal]] || [[trapezoidal|trapéziforme]] || || [[trapezoidal|梯形図法]] || || || || | | [[trapezoidal]] || [[trapezoidal|trapéziforme]] || || [[trapezoidal|梯形図法]] || || || || | ||
|- | |- | ||
− | | [[Winkel|tripel]] || ||[[Winkel I | + | | [[Winkel|tripel]] || ||[[Winkel I, Winkel II, Winkel Tripel]] || || || || || |
|- | |- | ||
| [[UTM|Universal Transverse Mercator]] || || || [[UTM|ユニバーサル横メルカートル図法]] || || || || | | [[UTM|Universal Transverse Mercator]] || || || [[UTM|ユニバーサル横メルカートル図法]] || || || || | ||
Line 211: | Line 211: | ||
| [[Van der Grinten projections]] || ||[[Van-der-Grinten-Projektionen]] || || || || || | | [[Van der Grinten projections]] || ||[[Van-der-Grinten-Projektionen]] || || || || || | ||
|- | |- | ||
− | | [[Wagner projections]] || || | + | | [[Wagner projections]] || ||Wagner I, II, III, IV, V, VI, VII, VIII, IX]] || || || || || |
|- | |- | ||
| [[Werner]] || || || [[ヴェルネル図法]] || || || || | | [[Werner]] || || || [[ヴェルネル図法]] || || || || | ||
Line 217: | Line 217: | ||
| [[Wiechel]] || || || || || || || | | [[Wiechel]] || || || || || || || | ||
|- | |- | ||
− | | [[Winkel]] || || | + | | [[Winkel]] || ||Winkel I, Winkel II, Winkel Tripel]] || || || || || |
|- | |- | ||
| [[Mercator|Wright]] || || || [[Mercator|メルカートル図法]] || || || || | | [[Mercator|Wright]] || || || [[Mercator|メルカートル図法]] || || || || | ||
|- | |- | ||
|} | |} |
Revision as of 03:50, 21 November 2006
This project aims to develop standards in naming map projections. We will attempt to survey all projections described in the literature or used in published references. All known names of all projections will appear in the table on this page. Synonymous names all link to the same page, which lists the recommended name as the title.
I (DaanStrebe) propose the following principles for naming projections. The highest applicable principle should determine the projection's recommended name.
- Principle of Preponderance of Precedence: Most disinterested references in most countries refer to the projection by a single name, and there are many such references.
- Example: Bonne.
- Principle of Originator: The projection is named for or by the person first known to have described or used it.
- Example: Tri-optimal. (No overwhelming precedence. Projection's originator proposed the name.)
- Principle of Formulator: The projection is named for or by the person who presented its mathematical development.
- Example: Kitada. (No overwhelming precedence; originator uknown.)
- Principle of Promoter: The projection is named for or by the person who popularized an otherwise obscure projection.
- Example: None known whose originator or principal describer is not known.
- Principle of Projection Properties: The projection is named for properties it has.
- Example: sinusoidal. (Originator and formulator unknown; several common names; no single promoter.)
I (DaanStrebe) also propose that proper names in projections be capitalized but other components not. Hence, plate carrée, not Plate Carrée; and Lambert conformal conic, not Lambert Conformal Conic.
To be resolved: The Peters case.