|
|
Line 21: |
Line 21: |
| {{SUPPORTEDLANGUAGES}} | | {{SUPPORTEDLANGUAGES}} |
| |- | | |- |
− | | [[Agnese]] || || || || | || || | + | | [[Agnese]] || || || || | || || || |
| |- | | |- |
| | [[Aïtoff]] || ||[[Aïtoff]] || || || || || | | | [[Aïtoff]] || ||[[Aïtoff]] || || || || || |
Revision as of 22:47, 7 June 2016
This project aims to develop standards in naming map projections. We will attempt to survey all projections described in the literature or used in published references. All known names of all projections will appear in the table on this page. Synonymous names all link to the same page, which lists the recommended name as the title.
I (DaanStrebe) propose the following principles for naming projections. The highest applicable principle should determine the projection's recommended name.
- Principle of Preponderance of Precedence: Most disinterested references in most countries refer to the projection by a single name, and there are many such references.
- Principle of Originator: The projection is named for or by the person first known to have described or used it.
- Example: Tri-optimal. (No overwhelming precedence. Projection's originator proposed the name.)
- Principle of Formulator: The projection is named for or by the person who presented its mathematical development.
- Example: Kitada. (No overwhelming precedence; originator uknown.)
- Principle of Promoter: The projection is named for or by the person who popularized an otherwise obscure projection.
- Example: None known whose originator or principal describer is not known.
- Principle of Projection Properties: The projection is named for properties it has.
- Example: sinusoidal. (Originator and formulator unknown; several common names; no single promoter.)
I (DaanStrebe) also propose that proper names in projections be capitalized but other components not. Hence, plate carrée, not Plate Carrée; and Lambert conformal conic, not Lambert Conformal Conic.
To be resolved: The Peters case.
English |
Français |
Deutsch |
日本語 |
Русский |
Español |
Polski |
Português
|
Agnese |
|
|
|
|
|
|
|
Aïtoff |
|
Aïtoff |
|
|
|
|
|
Aïtoff-Wagner |
|
Wagner IX |
|
| |
|
|
Airy |
|
|
|
| |
|
|
Albers |
|
Albers' flächentreuer Schnittkegelentwurf |
|
| |
|
|
American polyconic |
|
|
|
|
policónica americana| |
|
analemma |
|
|
正射図法 正変形図法 |
|
analema| |
|
Apian I |
|
|
|
|
|
|
|
Apian II |
|
|
|
|
|
|
|
armadillo |
|
Raisz' Armadillo |
|
|
armadillo| |
|
Atlantis |
|
|
|
|
|
|
|
azimuthal equidistant |
|
abstandstreuer Azimutalentwurf |
正距方位図法 |
равнопромежуточная азимутальная |
acimutal equidistante| |
|
Babinet |
|
|
|
|
|
|
|
Bacon |
|
|
|
|
|
|
|
Balthasart |
|
|
|
|
|
|
|
Behrmann |
|
|
|
|
|
|
|
Berghaus |
|
|
|
|
|
|
|
bipolar conic conformal |
|
|
|
|
cónica conforme bipolar| |
|
Boggs |
|
|
|
|
|
|
|
Bonne |
|
Bonnescher Entwurf |
|
|
|
|
|
Bordone |
|
|
|
|
|
|
|
Braun |
|
|
|
|
|
|
|
Breusing |
|
Breusings vermittelnder Azimutalentwurf |
|
|
|
|
|
Briesemeister |
|
Briesemeister |
|
|
|
|
|
Cahil |
|
|
|
|
|
|
|
Cassini |
|
Cassinische Projektion |
|
|
|
|
|
central |
|
Zentralprojektion |
心射図法 |
|
|
|
|
Cole |
|
|
|
|
|
|
|
Craster |
|
|
|
|
|
|
|
Donis |
|
|
梯形図法 |
|
trapezoidal| |
|
Eckert I |
|
Eckert I |
|
|
|
|
|
Eckert II |
|
Eckert II |
|
|
|
|
|
Eckert III |
|
Eckert III |
|
|
|
|
|
Eckert IV |
|
Eckert IV |
|
|
|
|
|
Eckert V |
|
Eckert V |
|
|
|
|
|
Eckert VI |
|
Eckert VI |
|
|
|
|
|
Eckert-Greiffendorff |
|
Eckert-Greiffendorff |
|
|
|
|
|
equidistant conic |
|
abstandstreuer Kegelentwurf |
正距円錐図法 |
равнопромежуточная коническая |
cónica equidistante| |
|
equirectangular |
|
|
|
|
equirrectangular| |
|
Flamsteed's cylindrical |
|
|
|
|
cilíndrica de Flamsteed| |
|
Fournier I |
|
|
|
|
|
|
|
Gall orthographic |
|
|
|
|
|
|
projecção ortográfica de Gall
|
Gall stereographic |
|
|
|
|
|
|
projecção estereográfica de Gall
|
Gall-Peters |
|
|
|
|
|
|
|
Gauss-Krüger |
|
Gauß-Krüger-Projektion |
カウス=クリューゲル図法 |
Гаусса-Крюгера |
Gauss Krüger| |
|
Gauss-Laborde |
|
|
|
|
|
|
|
Gauss-Schreiber |
|
|
|
|
|
|
|
geographic projection |
|
quadratische Plattkarte |
正距円筒図法 正方円筒図法 |
проекция географических координат |
geográfica| |
|
gnomic |
|
|
心射図法 |
|
|
|
|
gnomonic |
|
|
心射図法 |
гномоническая |
gnomónica| |
|
Goode |
|
Goodesche Form Goode-Homolosine |
|
|
|
|
|
Hammer-Aïtoff |
|
Hammerscher Entwurf |
|
|
|
|
|
homalographic |
|
|
|
|
homolográfica| |
|
homolosine |
|
|
|
|
homolosena| |
|
horologium |
|
|
心射図法 |
|
|
|
|
horoscope |
|
|
心射図法 |
|
|
|
|
Hotine |
|
|
|
|
|
|
|
Immler |
|
|
|
|
|
|
|
Laborde |
|
|
|
|
|
|
|
Lagrange |
|
|
|
|
|
|
|
Littrow |
|
|
|
|
|
|
|
Lorgna |
|
|
|
|
|
|
|
Mendeleev |
|
|
|
|
|
|
|
Mercator |
|
Merkator |
メルカートル図法 |
Меркатора |
Mercator| |
|
Mercator equal-area |
|
flächentreuer Merkatorentwurf |
サンソン図法 |
|
Mercator equivalente| |
|
Mercator-Sanson |
|
Merkator-Sanson-Entwurf |
サンソン図法 |
|
|
|
|
oblique cylindrical orthomorphic |
|
|
斜軸メルカートル図法 |
|
|
|
|
Miller |
|
|
|
|
|
|
|
Mollweide |
|
Mollweidescher Entwurf |
|
|
|
|
|
Murdoch |
|
|
|
|
|
|
|
Nicolosi |
|
|
ニコロシー図法 |
|
|
|
|
orthographic |
|
orthographisch |
正射図法 正変形図法 |
ортографическая |
ortográfica| |
|
parabolic |
|
|
|
|
parabólica| |
|
Peters |
|
|
|
|
|
|
|
planisphere |
|
|
平射図法 |
|
|
|
|
plane chart |
|
quadratische Plattkarte |
正距円筒図法 正方円筒図法 |
|
|
|
|
plate carrée |
|
|
正距円筒図法 正方円筒図法 |
|
equirrectangular| |
carta quadrada
|
Ptolemy I |
|
|
トレミー第一図法 |
|
|
|
|
Ptolemy II |
|
|
トレミー第二図法 |
|
|
|
|
Ptolemy III |
|
|
トレミー第三図法 |
|
|
|
|
Ptolemy's homeotheric |
|
|
トレミー第二図法 |
|
|
|
|
Robinson |
|
|
|
|
|
|
|
Rosenmund |
|
|
|
|
|
|
|
Sanson-Flamsteed |
|
|
|
|
|
|
|
simple cylindrical |
|
|
正距円筒図法 正方円筒図法 |
|
|
|
|
Sanson-Flamsteed |
|
|
サンソン図法 |
синусоидальная (проекция Сансона) |
|
|
|
scenographic |
|
allgemeine Perspektive |
|
|
escenográfica| |
|
sinusoidal |
|
sinusoidal |
サンソン図法 |
синусоидальная |
|
|
|
space oblique Mercator |
|
|
|
внешняя косая равноугольная цилиндрическая проекция Меркатора |
Mercator oblicua| |
|
stereographic |
|
stereographisch |
|
стереографическая |
estereográfica| |
|
stereographic cylindric |
|
stereographische Zylinderprojektion |
|
|
|
|
|
Stabius I |
|
|
|
|
|
|
|
Stabius II |
|
|
ヴェルネル図法 |
|
|
|
|
Stabius III |
|
|
|
|
|
|
|
Stab-Werner |
|
Stab-Werner |
スタプ=ヴェルネル図法 |
|
|
|
|
transverse cylindrical orthomorphic |
|
|
横メルカートル図法 |
|
|
|
|
trapezoidal |
trapéziforme |
|
梯形図法 |
|
trapezoidal| |
|
tripel |
|
Winkel I, Winkel II, Winkel Tripel |
|
|
|
|
|
Universal Transverse Mercator |
|
|
ユニバーサル横メルカートル図法 |
|
Mercator transversa universal| |
|
UTM |
|
|
UTM 図法 |
УТМ |
MTU| |
|
Van der Grinten projections |
|
Van-der-Grinten-Projektionen |
|
|
|
|
|
Wagner projections |
|
Wagner I, II, III, IV, V, VI, VII, VIII, IX |
|
|
|
|
|
Werner |
|
|
ヴェルネル図法 |
|
|
|
|
Wiechel |
|
|
|
|
|
|
|
Winkel |
|
Winkel I, Winkel II, Winkel Tripel |
|
|
Winkel Tripel| |
|
Wright |
|
|
メルカートル図法 |
|
|
|
|